
www.manaraa.com

I I I , I

240

Coding-B ased Replication
Schemes for Distributed Systems

Gagan Agrawal and Pankaj Jalote, Senior Member, ZEEE

Abstract-Data is often replicated in distributed systems to
improve availability and performance. This replication is expen-
sive in terms of disk storage since the existing schemes generally
require full files to be stored at each site. In this paper, we present
schemes which significantly reduce the storage requirements in
replication based systems. These schemes use the coding method
suggested by Rabin to store replicated data. The first scheme that
we present is a modification of the simple voting algorithm and its
quorum requirements. ,We then show how some of the extensions
of the voting algorithm can also be modified to get storage
efficient schemes for managing such replication. We evaluate the
availability offered by these schemes and show that the storage
space required to achieve certain availability are signiscanfly
lower than the conventional schemes with full file replication.
Since coding is used, these schemes also provide a high degree
of data security.

Index Terms- Availability, coding schemes, data replication,
data security, disk usage, distributed databases, fault-tolerance,
performance evaluation, voting protocols.

I. INTRODUCTION

N A DISTRIBUTED SYSTEM, data can be replicated to I provide fault-tolerance against site failures and network
partitions and to improve performance. This data replication
requires a replica control algorithm to maintain consistency of
the data. A survey of such methods can be seen in [12].

One such method for replica control is the weighted voting
scheme suggested by Gifford 1141. In this algorithm, each node
is assigned a number of votes. If N is the total number of votes
assigned to all the nodes, then a quorum of T votes is required
to do a read operation, and a quorum of w votes is required to
perform a write operation. These quorum values are such that,
T + w > N and 2 * w > N . This ensures write-write mutual
exclusion and read-write mutual exclusion. A particular case
of the weighted voting is simple voting in which each node is
assigned exactly one vote.

With weighted voting, a node which wants to perform an
operation on data, first sends a request to all the nodes in the
system. The nodes reply with their version numbers (denoting
the number of successful updates made). When the requester
node gets T (W) votes, it can perform the read (write) operation.
For read, it reads the data from node with the highest of the

Manuscript received April 1992; revised November 1992.
G. Agrawal is with the Department of Computer Science, University of

P. Jalote is with the Department of Computer Science and Engineering,

IEEE Log Number 9408134.

Maryland, College Park, MD 20742 USA.

Indian Institute of Technology, Kanpur, India.

version numbers given by the nodes that have replied. For a
write, the node determines the highest version number, and
writes on all the nodes that constitute the write quorum. All
of these nodes then have the version number as one more than
the highest version number existing in the system previously.
The quorum conditions ensure that the node with the highest
of the version numbers in a read/write quorum has the latest
copy of the data. Many extensions to the voting method have
been proposed [4], [l l] , [13], [191-[21], 1251. Performance
and reliability issues of these schemes have been studied in
PI, r71, P I .

A major drawback of replication based schemes is the high
degree of disk storage requirement. If the file is replicated at N
nodes, the disk storage requirement increases N fold. Just for
maintaining availability of data against failure of one node at
a time, the data has to be replicated at 3 nodes [21], incurring
three times the disk storage costs.

In this paper, we present schemes for maintaining replicated
files, that significantly reduce the amount of storage space
required to maintain the files with a given availability. These
schemes use the coding suggested by Rabin [23], [24] to store
the files. In this coding a file F is encoded and broken into
n parts, each of size (F (/ m (m and n are parameters such
that m 5 n). Only one such part of the file, called a coded
partial file (CPF), is stored at each node. The file can be
reconstructed by any m of such n CPF's. With the files being
stored in a coded form, the read and write algorithms have
to be redesigned. The first scheme that we present, simple
voting with coding (SVWC), is obtained by modifying the
simple voting algorithm and the quorum requirements. We
also present how dynamic voting [17] is modified to obtain
dynamic voting with coding (DVWC). We also discuss how
some of the other extensions to the voting algorithm, weighted
voting [I41 and the approach of coteries [13], can also be
modified.

Use of this coding in storing replicated data also provides
a high degree of data security [3]. Since the file is stored in
a coded form and only l/mth fraction of the file is stored at
one nodes. An unauthorized user has to break into at least m
different nodes and decipher the coding in order to read the
file. This ensures far higher security of data as compared to the
storage of entire file at each node, with or without any coding.

The rest of the paper is organized as follows. We briefly re-
view some other approaches to reducing storage in replication
based systems in Section 11. We discuss the coding scheme as
suggested by Rabin in Section 111, we look into how it may be
used to store replicated data and our first scheme (SVWC) in

1045-9219/95$04.00 0 1995 IEEE

www.manaraa.com

AGRAWAL AND JALOTE: CODING-BASED REPLICATION SCHEMES 241

Section IV. The performance (availability and communication
overheads) of SVWC is evaluated in Section V. We consider
DVWC in Section VI and some other extensions to the voting
scheme in Section Vn.

n. RELATED WORK
In this section, we briefly review some other approaches

to reducing storage requirements in replication based systems.
The only other known approaches to reducing storage require-
ments in replication based schemes are voting with witnesses
suggested by Paris [19], [20] and the fragmentation based
approach suggested by Agrawal and Abbadi [l], [2].

In Voting with Witnesses, some of the regular copies are re-
placed by witnesses. Witnesses store only the version number
for that site but no data. They, therefore, occupy very little
space. Witnesses can participate in read and write operations
by sending their version number but read or write quorum
must include at least one regular copies with the latest update.
In [19], it has been shown that replacing some of the regular
copies with witnesses has only marginal effect on availability,
while reducing the storage requirements. However, this reduc-
tion in storage requirements is marginai since if many regular
copies are replaced by witnesses, then the availability does
get effected severely.

In the fragmentation based approach, a file to be replicated
is broken into N parts, called fragments, where N is the
number of sites participating in the replication. m fragments
(m<N) are stored at each site such that each fragment is
stored at exactly m sites. With this, the storage has been
reduced to m/N of the original requirement. Any N - m + 1
sites will always suffice to reconstruct the original file. This
approach, as such, provides very low resiliency since the read
and write quorums must intersect at N - m + 1 sites. A
propagation based mechanism is used to improve resiliency
in this scheme. In this, the transactions are stored in logs
till other sites in the system can recover. With this, the
read and write quorum need to intersect at just one site
(same as with simple voting). Even with this, the maximum
reduction in the storage space that this scheme can provide
is restricted to N / [N + 1/21. Further, this approach has
many deficiencies. With the complicated propagation based
mechanism, the conceptual simplicity of voting based methods
is lost. Further, the logs used in this mechanism take storage
space themselves. This becomes significant if the failures are
frequent and the recoveries do not take place fast enough. The
propagation based approach incurs significant communication
overheads as well.

This scheme is also incapable of accommodating a change in
the number of sites participating in the replication which might
occur when the system is operational. This is because when
the file is fragmented, the number N gets fixed. If the number
of sites participating in the replication increases (or decreases)
then the number of fragments into which the file has to be
fragmented also changes. Also, the way this fragmentation is
done, this is likely to incur significant overheads if during a
write operation, the size of the file gets changed significantly,
since the fragments will need to be created again.

III. CODING SCHEME
In the coding scheme suggested by Rabin 1231, [24], a file

F of size IF1 is broken into n parts of size IFl/m such that
any m of these n parts are sufficient to reconstruct the file,
where, n 2 m.

In this scheme, splitting and recombining files is done by
using n vectors in m dimensional vector space, such that
any m of these n are linearly independent. We will refer to
such a system of coding as an (m,n) system. To understand
this coding, consider a matrix FM, in which the bytes of
the file are packed row-wise, m bytes in each row. In all
the computations described, a byte is an integer in the range
0 . - .2‘ - 1, (1 is the number of bits in a byte). All operations
are in modulo p, for a prime integer p > 2‘.

Let the n vectors of dimension m chosen for splitting and
recombining be

ai = a;l.-.a;,, i = l - . - n .

A splitting matrix SM is constructed by arranging these n
vectors column-wise. That is, SM;j = ai;. A coded file matrix
CF is obtained as follows

FM * SM = CF.

The ith column of CF represents the fragment to be identified
as the ith Coded Partial File (CPF). The way in which these
CPF‘s have been coded, a group of m consecutive bytes in the
original file is represented as one byte in each of the n CPF’s.
This procedure of splitting files requires in all n additions and
n multiplications per byte of the original file. For recombining,
suppose that the m CPF’s available are T I , ~ 2 , - - , T,. To
obtain the original file, we construct a matrix SM’, such that
SMI-j = SM;, = arj;. That is, the column j of SM‘ is
the column ~j of SM. SM’ is an invertible m * m matrix
because its m columns are linearly independent m dimensional
vectors. We further construct a matrix CF’, representing the
m CPF‘s available for computing the original file, such that
CF:j = CFi,. Clearly

F M * SM’ = CF’ + F M = CF’ * SM’-l.

Thus, the file can be reconstructed. The calculations for
reconstruction require m additions and m multiplications per
byte in the original file.

An important prerequisite for this coding is a set of n
vectors of dimension m, such that any m of them are linearly
independent. One method of constructing this is the use of
Vandermonde matrix [181.

Also note that the CPF’s are constructed using modulo
p arithmetic, where p > 2‘. This may results in “bytes” in
the computed CPF’s which cannot be represented by a 1
bit sequence. This problem can be taken care of as follows.
Consider 1 = 8 (i.e., an 8-b byte, common with the current
technologies). We use the following method for storing a
computed “byte” with value greater than 255 (2‘ - 1). The
bit sequence representing 255 is used as a special character
which means that the current byte has overflown. In this case,
the next byte in actual storage stores the overflow (z + 1 - 2‘,
where z is the value of the byte computed). Note that the

www.manaraa.com

242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

smallest prime number greater than 255 is 257. So, the storage
overhead associated with storing these overflown bytes, when
2 = 8, is less than one percent, which is negligible.

This coding scheme has also been used for providing data
security in replicated databases [3]. Also, in [lo], a unix
implementation of this coding scheme has been presented.
Here, a file dispersal shell (FDS) has been developed which
uses Rabin’s coding for providing a storage efficient disk
mirroring scheme.

Iv . USING CODING WITH SIMPLE VOTING
This coding can be used to support replicated data in

distributed systems. If the data is to be replicated at N nodes,
then instead of storing full file at each node (and increasing
the disk storage N fold), we can store replicated data using
this coding. With coding, we may need to store only one CPF
at each node in which case the disk storage is reduced by a
factor of m. We will refer to a system with (m, n) coding and
N sites participating in the replication as an (m, n, N) system.

With coding, reading and updating a file becomes more
complex. The changes made in the original file have to be
incorporated into each CPF. A change made in one or more
of the m bytes in a row of FM corresponds to a change in one
byte at each CPF. Any change in the file can be incorporated in
the CPF’s by multiplying these rows of FM by the columns of
SM corresponding to the CPF’s participating in the operation
and changing those specific bytes at the individual CPF’s.

With this method of storing replicated data, we need proper
read and update mechanisms such that data consistency is
maintained and high availability is supported. In this sec-
tion, we present a protocol called simple voting with coding
(SVWC), which is a modification of the simple voting method.

In our (m, n, N) system, we assume that n 5 N , i.e.,
number of CPF‘s does not exceed the number of nodes.
Exactly one CPF is stored at each node. Also, each CPF is
stored at at least one node and if n < N, some CPF‘s may
be stored at more than one node. The n CPF’s generated by
the coding are labeled 1 . . . n. A set of CPF’s are said to be
all distinct if no two of them are the same. A version number
denoting the number of successful updates made on the CPF at
that node is maintained at each node. We assume that the nodes
can fail only by aborting the transaction [26]. We consider only
the simplest form of voting, in which each node (which has
exactly one CPF) is assigned one vote each.

A. Quorum Requirements

Since coding is used for storing replicated data, the quorum
requirements of SVWC are different from that of voting
method. The quorum for the read operations must include
at least m distinct CPF’s with the latest updates. The write
operation must write sufficient CPF’ s to enable participating
set of certain cardinality to include m distinct CPF‘s with latest
update. Here, we study the bounds on the quorum values.

Dejinition I: Minimum Sufficient Quorum (MSQ) for read
(write) operations is defined as the smallest number of votes
which may allow a read (write) operation to complete success-
fully. We denote this by r’(w’).

Clearly, for a (m,n,N) system, MSQ for read and write
operations can be given by

r’ = max(m,r)
w’ = max (m, w)

where r and w are quorum sizes for read and write operations
for simple voting in a system with N nodes. If a write
operation updates at least n’(n’ 2 m) distinct CPF’s in the
system, we then have

w’ = max (n’, w).

Dejinition 2: Maximum necessary quorum (MNQ) for read
(write) operation is defined as the largest number of votes
which may be required to successfully complete a read (write)
operation. We denote this by ~ ” (w ”) .

Note that in weighted voting with conventional storage,
there was no such concept of MNQ and MSQ since the same
number of votes would be minimum sufficient and maximum
necessary. For example, a read operation cannot be completed
without r votes (r + w > N) since mutual exclusion will not
be assured and can always be completed with r votes since it
will always include at least one site with the latest update.

The MNQ requirements for read and write operations will
determine the minimum resiliency of the system for the read
and write operations.

Claim I : In an (m,n,N) system with SVWC where
every write operation updates at least n’ distinct CPF’s, the
MNQ for the read operations is given as r” = N - n’ + m.

Proof: We need to prove that this is the minimum
number of votes which shall ensure mutual exclusion and shall
always include at least m distinct CPF‘s with the latest update.
If r“ = N - n‘ + m and since w’ 2 n‘, we get

TI‘ + w‘ 2 N + m

which means that a read quorum of cardinality N - n’ + m
will always intersect with any write quorum. This ensures
mutual exclusion. Now, a participating set of cardinality
N - n’ + m or more excludes at the most n’ - m sites. Since
the write operation had updated at least n’ distinct CPF‘s, at
least m CPF’s with latest update will be included in such a
participating set.

Alternatively, consider a participating set of cardinality less
than N - n’ + m. In the worst case, the last write had updated
exactly n’ distinct CPF’s, n’ - m + 1 of those are not present
in the participating set, so, the operation cannot complete

Claim 2: In an (m,n, N) system with SVWC, where
every write operation updates at least n’ distinct CPF’s, the
MNQ for write operations is given as.w” = max(w’, N -
n + n’).

Proof: w” must be greater than or equal to w’ to ensure
mutual exclusion. We know, by our system model, that there
are n distinct CPF’s present in the system. If the participating
set has a cardinality of N - n + n’ or more, at the most n - n‘
sites are excluded. So, at the most n - n’ distinct CPFs are
excluded from the participating set, implying that at least n’
distinct CPF’s are present in the participating set.

successfully. 0

www.manaraa.com

243 AGRAWAL AND JALOTE: CODING-BASED REPLICATION SCHEMES

Alternatively, consider a set with cardinality less than
N - n + n’. Here, n - n’ + 1 distinct CPF’s may be excluded
from the participating set, and, in the worst case, they may all
be the only CPF’s of their kind in the system. So, less than n‘
distinct CPF’s may be present in the participating set. 0

B. SVWC

has an upper bound of N - w’, since w’‘ has to at least w’.
Decreasing n’ below w’+n-N does not decrease w”, whereas
T” increases. So, r + w” increases if n’ is less than w’ +n - N .

Moreover, it can be seen that highest overall resiliency
(lowest value of 2*N- (T”+w”) = N-m) is achieved when
n = N, that is, when all the sites have distinct CPF’s. Clearly,
if all the CPF’s are distinct, then lesser number of votes would

We have seen the bounds on the quorums in the preceding
subsection. For a particular operation, the number of the votes
in the quorum can be between MSQ and MNQ based on the
responses for the request that it receives from other sites.
The site initiating a read (write) operation sends read (write)
request to all the other sites in the system. The sites reply with
their version numbers and the CPF numbers.

The read operation proceeds as follows. The site initiating
the operation (initiator) first collects at least r’ votes. This
ensures mutual exclusion with write operations and necessarily
includes at least one site with the last update, so the initiator
can determine the latest version number. It then checks if there
are at least m distinct CPF’s with the latest update. If so, it can
read from any m distinct CPF’s with latest version number.
Else, the quorum is not complete and it waits for responses
till it has m distinct CPF’s with 1atest.version number. By
definition, r” votes ensure that m distinct CPF’s with latest
update are included and so the quorum will necessarily be
complete.

The write operation is also similar. The initiator first collects
at least w’ votes to ensure mutual exclusion. Presence of n’
distinct CPF’s is necessary for the quorum to be complete. It
collects votes till n’ distinct CPF’s are included. A total of w”
votes ensure this and necessarily completes the quorum.

Note that in a read operation, the initiator has to compute the
file from the m CPF’s it has read. This requires 2m operations
per byte of the original file. Similarly, if a write operation has
to update a sequence of k bytes in the original file, then it
requires (r(IC/m)l + 1)mn operations in all.

C. Resiliency

Resiliency of a system means the maximum number of
failures that can be tolerated while keeping a particular service
or operation available. In our system, N - T” and N - w”
are, respectively, the resiliency offered by the read and write
operations. In voting systems, typically the read resiliency
can be improved at the expense of write resiliency and vice-
versa. However, the sum of the read and write resiliency
remains unchanged and hence can be used as a measure of the
effectiveness of the scheme with respect to the fault-tolerance
it offers. Therefore, we use this as a measure of the fault-
tolerance of SVWC. This value for voting algorithm is N - 1.
By the claims 1 and 2 we have, assuming w’ 5 N - n + n’

2 * N - (r” + w“) = n - m.

This value therefore, does not depend upon n’ as long as
w’ 5 N-n+n’. By varying n’, the values of r” and w” can be
changed. That is, a higher n’ gives lower write resiliency and
higher read resiliency, whereas decreasing n’ increases write
resiliency and reduces read resiliency. The write resiliency

be required by read and write operations to ensure m distinct
CPF’s with the latest update and n’ distinct CPF’s respectively.
As n decreases, the resiliency of the system decreases. It can
be concluded that to achieve maximum fault-tolerance from
the system, one should have a system with n = N .

However, there are reasons why a lower n may be preferred.
We believe that a replica control protocol should be capable of
accommodating changes in the number of sites participating
in replication. Consider the case when the number of sites
participating in the replication may increase. Now, adding a
new vector, such that it is linearly independent with any set of
m - 1 of the n vectors participating in the coding being used in
the system, can be a very difficult task. Whereas, changing the
system from (m, n, N) to (m, n, N + 1) may be an easier task,
involving only change in the quorum requirements [14], [20].
The system will then be operating with lower n as compared
to N . Moreover, the computational cost of determining the
various CPF’s increases as the number of distinct CPF’s
increases. Thus, we will prefer a system with a comparatively
lower n as compared to N .

Example: Consider an (3, 10, 12) system. The value of
r” + w” for SVWC is 17, provided n’ 2 w’ - 2. This value
for a 12 node system with conventional voting is 13. If we
choose r = 4,w = 9 and n’ = 10, we haver’ = 4, w’ = 9,
r” = 5 and w” = 12. The resiliency for write operations may
be improved by decreasing n’, for n’ = 7, we have r” = 8
and w” = 9. The resiliency for write operations cannot be
increased any further since further decrease in n’ increases r”
without decreasing w“ .

D. Dynamic Redistribution of CPF’s

We saw in previous subsections that to ensure the presence
of m distinct CPF’s in the participating set with certain number
of votes, the write operations are required to update at least n’
distinct CPF’s, resulting in a high MNQ for write operations.
These conditions apply to a system where CPF’s are statically
distributed among the nodes.

We can achieve higher resiliency with lower n if we allow
dynamic change in the distribution of CPF’s on the nodes in
the system. With this approach, if during a write operation
involving k sites (IC 2 n’) only Z(Z< n’) distinct CPF’s
are present in the participating set, then the write operation
completely rewrites some duplicate CPF’s in the participating
set such that, at the end of the write operation, the participating
set consists of at least n’ distinct CPF’s.

For example, suppose the participating set consists of ex-
actly n’ sites, containing only n‘ - 1 distinct CPF’s, such
that two sites have the ith CPF while j th CPF is not present
at all. The write operation may replace an ith CPF by an
updated j th CPF, while all the other CPF’s may be updated

www.manaraa.com

. ,

244 E E E TRANSAcIloNS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

at their respective sites. The write has, now been done on
n‘ distinct CPF’s, without the write set initially including n’
distinct CPF‘s.

By this policy, a write operation “redistributes” the CPF‘s
in the system. By the method the CPF‘s are replaced by other,
at least one copy of each of the n distinct CPF’s is always
present in the system.

The SVWC changes as follows. The read algorithm remains
unchanged. The write algorithm no longer needs to include n’
sites with distinct CPF‘s, it simply needs to include n’ sites.
The MSQ requirements and claim 1 remain the same. To give
maximal resiliency we have

n’ = min (w‘, n).

This is because the write quorum will involve at least w‘
sites. If w’ 2 n and if the write operation updates at least w’
CPF’s, then the Y Q requirements for read can be reduced.
Taking n’ > w’ would increase the MNQ requirement for write
operations. But n’ has to be less than or equal to n anyway.
With this value of n’, the MNQ for read (from Claim 1) is

r“ = N - w’+m, i f n 2 w‘
otherwise. = N - n + m,

Claim 2 no longer holds since the write operation does not
need to include n‘ distinct CPF’s. Since n’ 5 w’, the presence
of w’ sites would be enough to ensure n’ CPF‘s in the quorum.
However, if the write operation needs to redistribute the CPF’s,
and was otherwise not writing the entire data item, it may need
to perform a read operation to be able to write a full CPF at
the sites where the CPF is being replaced. The MNQ for write
is, therefore

w’’ = max (w’, r”).

We see that if n 2 w’, then r “ + w‘ = N +m. Ifr and w
have been so chosen that w‘ 2 T”, then 2 * N - (r” + w”) =
N - m. So, for all choices of n from w’ to N, the sum of the
resiliency of read and write operations is N - m. This implies
that with the dynamic redistribution of CPF’s, we can achieve
better fault-tolerance, even with lower n.

Note that the restrictions for achieving N - m as the sum
for read and write resiliency are n 2 w’ 2 r”. w’ 2 r’l is not
a serious restriction since, in voting systems the write quorum
is generally greater than the read quorum anyway. The only
restriction therefore is that n should be at least w’.

Example: Consider a (3, 10, 12) system again. If we
take r = 4 and w = 9 again, we get n‘ = 9. This gives

15, a clear improvement over 17 necessary without dynamic
redistribution. Note that this could have been achieved for any
value of n from 9 to 12. If n = 8,n’ becomes 8 then r’’
changes to 7. r” + w” is then 16.

r‘ = 4 , ~ “ = 9 , ~ ” = 6 and w” = 9, giving r” + w“ =

v. m O R M A N C E

In the previous sections we have seen how coding can be
used to store replicated data. We also saw SVWC, a new
scheme for managing replication when coding is used to
store replicated data. Clearly, if coding is used, the storage

requirements can be reduced by a factor of m. However,
since the quorum requirements have changed, the availability
offered is lowered. We, therefore, study the reductions in
the storage space to store the data with a given amount of
availability. In this section only, we also study the changes in
the communication overheads with the proposed scheme.

A. Availability

Availability is the most important performance metric of
any voting system. The definition of availability that we will
use is as follows. Availability of read (write) operations of
any system is the probability, in the steady state, of a read
(write) quorum being available in the system. To evaluate
the availability, we make the following assumptions about
our system. We assume that each site is operational at any
time with a probability p (called availability of a node),
independent of any other site. Further, we assume that no
network partitions take place. This assumption is required to
separate our analysis from numerous network topologies that
may exist in a distributed system. This assumption has already
been used for analysis in [5], [8], [15], [19]-[21]. Also, its
has been shown in [17] that the results on the availability
are qualitatively the same when the analysis is done with or
without considering the network partitions.

For simplicity, we assume that operations take place only
when MNQ is met. Note that the actual availability of SVWC
is more than what we evaluate here since operations may be
completed even with quorum values less than MNQ. In our
(m, n, N) system, we assume that n 2 N + m/2 and dynamic
redistribution is used. One possible quorum assignment for
SVWC gives

N + m w = IT], r/I = 1 7 1 .
A similar assignment for simple voting for a system of N
nodes is

We compare the availability for write operations using these
vote assignments.

The availability of write operations for conventional voting
is

N

P [X 2 w] = (7)p’(l - p) N - i .
i=w ‘ ’

where, X is the number of operational sites at any time. The
availability of write operations for the (m, n, N) system is

(7)
i=w

The storage factor (denoted by 1) of a (m, n, N) system is
N/m. A storage factor of 1 means that the overall storage in
the system is 1 times the size of the file being replicated. The

www.manaraa.com

AGRAWAL AND J m CODING-BASED REPLICATION SCHEMES

Availability

1 .00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25
L I I I I I
500.00 600.00‘ 700.00 800.00 900.00

Fig. 1 . Availability of system versus availability of nodes (1 = 5).

storage factor, therefore, represents the storage overhead in
the system. In the discussion that follows, system with m = 1
means simple voting (i.e., without coding).

Fig. 1 shows how the availability of (m,n,l * m) system
varies with the availability of nodes (p) for the same storage
factor (fixed at 1 = 5). We can see that, except when the nodes
have very low availability (p < .70), the availability increases
as m increases. The relatively poor performance of voting with
coding at higher m when p < .70 can be explained as follows.
In coding with parameter m, the expression of availability
excludes terms (N / i) p i (l - P) ~ , from i = [(N + 1/2)1 to
[(N + m/2)1 - 1 as compared to the availability without
coding. In the binary expansion of (p + (1 - P)) ~ , the central
terms become significant if p is close to 0.50. Hence, the
availability offered reduces. However, for p close to 1, only
the end terms in the binary expansion are significant, hence,
the availability offered (with a given N) is high even with a
higher value of m.

In Fig. 2, we show the storage factor required by (m, n, 1 *
m) system to achieve desired availabilities, (p is fixed at
.90). For high availabilities, as m increases, the storage factor
required decreases. The reduction in the storage space is not
achieved when the availability required is low. This is because
when m is close to N , the probability of finding m distinct
CPF’s in the participating set is low.

In Fig. 3, the storage factor required to achieve availability
of .999 is shown at different values of p. Clearly, the storage
factor required decreases with increasing m. Moreover, with
m = 3 or m = 4, the reduction in storage space is generally
better than a factor of two. So, our scheme can definitely offer a
much greater reduction in storage space than the fragmentation
based approach.

I q u i d

24.00 t- I I I l m - 1
I

14.00 ‘““I

- 1

,-=3--

245

1zm -

10.00 -

0.00 I I I I I A*-loglo(l -Avsbilgy)
200 4m 6.00

Fig. 2. 6 required versus availability, p = .90.

B. Communication Overheads

To study the communication overheads associated with the
proposed scheme, we use bandwidth factor as the metric. The
bandwidth factor is the mean sum of the message sizes for
an operation. It is measured as a multiple of the size of the
original file on which read or write operations are being done.

The communication overhead corresponding to the broad-
cast of the read or write request is clearly proportional to the
number of sites participating in the replication. The number

www.manaraa.com

I I

246

m i

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

I I

13.00 -

T

1

I 1 1 I I

I required at different p , availability = .999.

800.00 85om 9m.m 9"

Fig. 3.

of messages required for writing the replicated data after
gathering quorum is [N + m/21 - 1, assuming that the site
initiating the operation is one of the sites written into. The
bandwidth factor is (l / m) * (I N + m/21 - 1).

In Fig. 4, we compare the bandwidth factor required for
write operations for different values of m, when the availabil-
ity required is varied (p = .go). The bandwidth requirement
for write operations decreases considerably with the use of
coding and with increasing m. Note that we are comparing
the systems with different values of m when they provide the
same availability. Thus, N increases with m. However, even
with increased N (and hence increased write quorum [N +
m/21), the bandwidth requirements decreases significantly
with increase in m. This is because the N required to maintain
the same availability increases only marginally with increase
in m and the bandwidth factor required for each message is
l / m .

For a read operation, data from m sites are read. Assuming
that no failure (or repair) has occurred since the last write in
the system and the read operation is equally likely to arrive at
all the operational nodes, the probability that the site initiating
the read request does not have the latest update is

Availability for write operations .
Note that if i sites (i 2 w"), participated in a write operation
and if only w" of them were updated, then the probability of
one of these i sites not having the latest update is i - w"/i.
The average number of messages required is m - 1 plus the
probability that the site initiating the operation does not have
the latest update (shown above). The bandwidth factor required
is the average number of messages required divided by m.

In Fig. 5 , we study the bandwidth factor required for read
operations, at different values of m, when availability required

No.dMeaagea -
I 1 I I I 1 m-1

1200 -

11.00 -

la00 -

9.00 -

8m -

7m -

6.00 -

5m -

4m-

3m -

w y) -

1.00 - -
I I I I I I

1.00 200 3m 4.00 5m 6.00

Fig. 4. Bandwidth factor required by write operations
(p = .go).

900.00

850.00

800.00

750.00

mm
650m

600.00

mM)
m.00

mM)
4aJM)

m m
300.00

250.00

mM)

1501)o

100M)

50.00

OM)

-
I I I I I Ilm-1

-loglo(1 - AvahWty)

versus availability

1.00 200 3M) 4M) 5.00 6M)

Fig. 5. Bandwidth factor required by read operations versus availability
(p = .go).

is varied (p = .go). For read operations the bandwidth
requirement increases as m increases.

From the analysis shown in this section, it is clear that
the proposed scheme SVWC gives better availability for
same storage factor. Alternatively, the storage requirements
for achieving certain desired availability decreases with the
proposed method. Note that the reduction in the storage

www.manaraa.com

AGRAWAL AND JALOTE: CODING-BASED REPLICATION SCHEMES 247

requirements achieved is much more than that from the frag-
mentation based approach and Voting with Wimesses. The only
disadvantage is the increase in the communication overhead
for read operations.

VI. DYNAMIC VOTING WITH CODING
We have seen how the simple voting protocol can be

modified to manage coding based replication. However, other
replica control protocols can also be modified to manage such
replications. In this section we present dynamic voting with
coding, a new scheme for managing coding based replication.
This scheme is derived from the dynamic voting algorithm
suggested by Jajodia and Mutchler [151-[171. The dynamic
voting algorithm algorithm of Jajodia and Mutchler is, in turn,
a modification of a previous replica control protocol suggested
by Davcev and Burkhard [ll].

A. Dynamic Voting Protocols

In the dynamic voting protocol, the quorum requirements
for read and write operations have been modified to enhance
availability in face of network partitions. 'In this algorithm,
any operation needs to collect a majority of the sites which
participated in the last update rather than a majority of all
the sites in the system. All sites participating in an update
operation record the total number of sites participating in that
operation in a variable called update site cardinality (SC).
All these sites then have the highest version in the system.
For the next update or read operation, at least a majority
of the SC([SC + 1/21) sites with the latest version number
are required. In this protocol all the sites available during a
write operation are updated, rather than updating just the sites
required for majority of SC.

Dynamic voting with coding (DVWC) operates in a similar
fashion. The only modification required is that any operation
needs at least m distinct CPF's with the latest version number
besides a majority of SC. For the simplicity of our discussion,
we assume that n = N . Now, the quorum requirements for
any operation in the system is max (m, [SC+1/21). With this,
the operation of DVWC remains the same as that of dynamic
voting as long as SC for any update is at least 2 m - 1.

B. Availability Analysis

We evaluate the availability offered by this protocol to
compare the storage space requirements with those of dynamic
voting. Again, we assume that network partitions do not
take place. To make our analysis feasible through stochastic
models, we assume that the a failure (recovery) arrives at
any operational (unoperational) site with a rate X(p). We
also assume that updates are much frequent than failures and
recoveries so that whenever any update or failure occurs, an
update arrives immediately with that topology. This is called
frequent update assumption. This assumption was used by
Jajodia and Mutchler for the original analysis of dynamic
voting [17]. This assumption may be quite reasonable for
certain applications, else, it may be satisfied by the use of
frequent polling [171.

...

...

Fig. 6. Markov chain representation of dynamic voting.

We use a Markov model to compute the availability of
these schemes. Under the above assumptions, the operation
of dynamic voting is as follows. Whenever SC is 3 or more,
the system is always available since if a failure arrives, still
SC - 1 sites with the latest update are available, this is a
majority of SC. Because of the frequent update assumption,
another update occurs in the system with SC one less than
the SC for previous update. If SC is 2 and both the sites with
the latest update are up, then also the system is available.
However, if SC is 2 and a failure occurs, then no operations
will be possible until both these sites with the latest update
are able to recover.

A Markov model for dynamic voting is shown in Fig. 6.
States are denoted by (X , Y) where X is the number of
operational sites with the latest update and Y is the number of
operational sites without the latest update. Note that if X 2 2,
then SC = X and Y = 0. The system will be available in this
case. If X < 2, then SC = 2 and the system is unavailable.

DVWC operates similarly with the parameter m replacing
2. If SC > m, then the system will definitely be available since
a majority of sites with the latest update as well as m sites
with the latest update are available. If SC is m and then a
failure strikes, then the system will be unavailable until all
these m sites with the latest update recover. Markov model
for DVWC is shown in Fig. 7.

C. Results
These Markov chains were solved by giving a generalized

stochastic Petri net (GSPN) description of these and using the
stochastic Petri net package (SPNP) [6]. An interesting aspect
of this analysis is that with the frequent update assumption,
the operation (in terms of quorum availability) of DVWC with
m = 2 is same as that of Dynamic Voting. This is because
operation of dynamic voting is a special case of DVWC with
m = 2. A reduction in storage space by a factor of 2 is,
therefore, achieved straight away. If the failures (recoveries)
occur at any operational (unoperational) sites with rate X (p) ,
then in steady state, the probability of any site being operation
is p / (p + A). We denote this by p.

www.manaraa.com

248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

...

...

t I t l

Fig. 7. Markov chain representation

-loglo(1 - AvdnbiUy)

of DVWC.

This may be explained as follows. While increasing the
I I I I c IP2 number of nodes decreases the probability of the system

entering the state where SC is m and not all the nodes
with the highest version number are up, the expected time
that the system (after having reached such a state) will
take to be able to offer availability again also increases
with N . Hence, availability cannot increase indefinitely with

Another point to note is that the maximum availability that
can be offered decreases with increase in m. This is because

these sites are up increases with increase in m.
However, for the realistic values of availability, the storage

space required does decrease with increasing m. With m = 2,

the full file replication. In Fig. 9, we compare the storage
space requirements for getting the availability of .999, for
m = 2 . . .5 . Clearly, significant reductions in the storage space

-

-

- increasing N .
-

- the probability of reaching a state where SC is m and not all
-

-

- the storage requirements decrease to half as compared to
-

- .
o m r I I I l ~ NltmbsoINodcr requirements can be achieved with higher values of m.

10.00 1o.w 30.00 am
Fig. 8. Availability offered versus number of nodes, (p = .so).

VII. CODING WITH OTHER VOTING SCHEMES

In this section we discuss how two of the extensions to the In Fig* 8y we 'Ompare the Offered by the dY-
namic voting with coding at different N , keeping P fixed at

simple voting, i.e., weighted voting and the approach based
on cote,$es can also be to maintin c o ~ c ~ e s s when 30. We compare the availability offered for m = 2 . . .5 . Note

that the results for simple dynamic voting are same as that of coding is used to store replicated data.

DVWC and m = 2.
From this graph we see that with dynamic voting (with

or without coding), increasing the number of nodes does not
indefinitely increase the availability (unlike simple voting).

A*

Weighted voting is a generalization of simple voting in
which a site can be assigned any number of votes. In [13],

voting

www.manaraa.com

AGRAWAL AND J A L O l l 3 CODING-BASED REF’LICATION SCHEMES 249

it has been shown that for a homogeneous system with odd
number of sites, assigning 1 vote to each site gives maximum
availability. If the number of sites is even, then giving one of
the nodes an extra vote helps in breaking ties (and improves
availability). In heterogeneous systems, however, more reliable
nodes can be given higher number of votes and this may help
improve availability. Also, giving higher number of votes to
sites having larger number of read and write requests coming
to them may also help improve performance of read and write
operations.

When coding is used for storing replicated data, sites may
be given different number of votes. However, for the MNQ
requirements shown in Sections IV to hold, a site with k votes
needs to keep k CPF’s if (k 5 m) and m CPF’s if k > m.
This is because in the computations for MNQ, we assume that
intersection of read and write quorum at m votes will imply
the intersection at m CPF’s also.

Clearly, giving higher weights to some of the sites increases
the overall storage requirement in the system. Note that this
wasn’t true with the full file replication since one full copy
of the file is stored at each of the sites irrespective of the
number of votes assigned to that site. However, the storage
site in weighted voting with coding never exceeds the storage
requirement of full file replication, since at the most mCPF’s
(i.e. one full copy) is stored at each site.

The main purpose of giving unequal votes to nodes may
be that by giving higher number of votes to nodes with
higher load, performance of read and write operations can
be improved. A node with higher number of votes will
have higher number of CPF‘s, so if the CPF’s at that site
have the highest version number, the communication cost
for read operations will be reduced. Similarly during the
write operations, not many other sites may be required to be
included in the quorum, again the communication costs will
be reduced.

B. The Method of Coteries
The approach based on coteries in [131 is a generalization of

the weighted voting method. Consider the set of nodes of the
system. A coterie is defined to be a set of subsets of this set
of nodes. These member subsets are such that each intersects
every other at at least one node and no such subset is a proper
superset of any other member subset. The quorum requirement
with this approach is that a set of nodes forms a quorum only if
it includes a member subset of the coterie. Clearly, since these
member subsets intersect, mutual exclusion of read-write and
write-write operations is ensured.

This approach may be modified to work with the coding as
follows. Again, we store one CPF at each of the nodes. We
define m-coterie, which is similar to coterie except that each
member subset must intersect with every other member subset
at at least m sites. For simplicity of discussion, we assume
that number of distinct CPF’s in system is at least equal to the
cardinality of the largest member subset in the coterie.

The quorum requirements will now be as follows. A write
quorum must include one such member subset of the coterie.
The write operation will use dynamic redistribution so that
after the write, all the nodes in the member subset have distinct
CPF’s. MSQ for read operations is a set of nodes such that
they intersect every member subset of the coterie at at least one
node. This ensures mutual exclusion and the highest version
number existing in the system can be known. If there are m
distinct CPF‘s with the highest version number, then the read
operation can be completed. The MNQ for read quorum is
same as the quorum requirement for the write operation.

VIII. DISCUSSION

Data replication is often used to enhance the availability
and performance in Distributed Systems. This replication
of data incurs a high storage overhead. In this paper, we
have presented schemes which significantly reduce the storage
requirements for maintaining the data with a given availability.
These schemes use the coding suggested by Rabin [2], [3] to
store replicated data.

In the proposed schemes, only coded parts of files are stored
at individual nodes rather than storing full files at each node,
as in the conventional schemes. m of these parts are required
to reconstruct the file. To use this coding for storing replicated
data, we need proper read and write algorithms.

The first scheme that we presented (SVWC), is a modi-
fication of the simple voting algorithm. The algorithm and
the quorum requirements are modified to manage such coding
based replication. We initially considered the case when the
distribution of these parts is static. Then, we extended this to
the case when the parts are dynamically redistributed during
the write operations. This dynamic redistribution improved the
resiliency. The second scheme that we presented (DVWC) is
similarly derived from dynamic voting algorithm of Jajodia
and Mutchler.

We evaluated the availability offered by both these schemes.
The results show that the storage space required to achieve
certain availability reduces significantly with the proposed
schemes. Alternatively, better availability can be achieved by

I I

www.manaraa.com

I I I1

250 IEEE TRANSACITONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 3, MARCH 1995

using the same storage space. We also briefly discuss how
some other extensions to the voting algorithms can also be
modified to derive storage efficient schemes for maintaining
replicated data.
Our method achieves much better reductions in the storage

requirements than the other approaches previously proposed
for this purpose. The maximum reduction that the fragmen-
tation based scheme can provide is by a factor of 2. Our
schemes, with the values of m 3 and above can provide much
better reduction in the storage requirements. Also, our schemes
do not suffer from the disadvantages that the fragmentation
based scheme suffers from. The fragmentation based scheme
is incapable of accommodating changes in the number of sites
participating in the replication. This is because in this scheme,
the number of sites participating in the replication is the same
as the number of fragments into which the file is divided.
In the proposed scheme, adding (or deleting) one site from
the system is simple, the system changes from (m, n, N) to
(m, n, N + 1) (or, (m, n, N - l)), requiring only a change in
the quorum requirements [14], [20].

In the fragmentation based scheme, if the size of the file is
changed significantly, the fragments will need to created again,
incumng significant overheads. The proposed scheme does not
have this disadvantage. Incremental updates can be made on
each of the CPF’s to accommodate any change made in the
original file. Also, note that both the proposed scheme and
the fragmentation breplication schemes. The proposed scheme,
however, does not add any complexity in the operation of the
voting protocol. The fragmentation based scheme, on the other
hand, requires a complicated propagation scheme to maintain
sufficient resiliency. We believe that such a scheme would
be hard to implement. Further, this propagation based scheme
requires significant storage and communication overheads, the
exact values of which are hard to assess.

The use of Rabin’s coding in replicated databases also
gives a high degree of data security [3]. Security of data
in a replicated distributed system may be a real concern,
because an unauthorized user may break into the data by
simply breaking into the protection scheme at any of the N
nodes where the data has been replicated. Also, during a read
or write operation, the files may be read by an adversary if the
communication links through which it is being transferred are
insecure, as it happens with most of the existing networking
technologies.

Some efforts for enhancing security in distributed systems
are [OO], [OOI, and [OO]. In [OO], Shamir suggests a method in
which the information of the file is distributed over N files,
each of the size of the original file, such that any m of then
suffice to reconstruct the file. (N and m are parameters, s.t.
m 5 N). While this method gives sufficient security, this is
not storage efficient as each of the N files are as large as
the original file. The approaches suggested in [OO], [OO] also
treat the issue of data replication separate from that of data
security.

Use of Rabin’s coding for storing replicated data overcomes
these problems and gives a high security to the replicated data.
An unauthorized user has to break into at least m nodes and
also has to decode the coding being used in order to read a file.

Also, read and write operations require only individual CPF‘s
to be transferred on a communication link at a time and not
the entire file, which provides security against network tapping
also.

Note that our method requires 2m operations per byte of the
original file for the read operation and 2n operations per byte
for write operations. (m and n are parameters of the coding)
Obviously, if the data is read and updated frequently, this
may be a considerable overhead. However, this cost may be
justified by the very significant reductions in the storage space
requirements. Also note that our method provides data security
as well. Any other scheme used for maintaining data security
will also incur similar overhead in coding and decoding files.

Overall, we believe that the proposed scheme can be very
useful in supporting replicated data in a storage efficient
manner, in addition to providing data security.

ACKNOWLEDGMENT

The analysis presented in Section VI of this paper was
done with the help of SPNP [6], a software for solving
general stochastic Petri nets. This tool has been developed
at Duke University. The authors are grateful to D. Liang
for having introduced them to this package. The authors also
thank W. Burkhard for suggesting [18] for constructing n m-
dimension linear vectors such that any m of them are linearly
independent. The comments from the referees greatly helped
in improving the presentation of this paper.

REFERENCES

[l] D. Agrawal and A. El Abbadi, “Reducing storage for quorum consensus
algorithms,” in Proc. Very Large Databases Con$, 1988, pp. 419430.

[2] -, “Storage efficient replicated databases,” ZEEE Trans. Data,
Knowl. Eng., vol. 2, pp. 342-351, Sept. 1990.

[3] -, “Integrating security with fault tolerance in distributed
databases,” in Comput. J., vol. 33, no. 2, pp. 71-78, Feb. 1990.

[4] G. Agrawal and P. Jalote, “An efficient protocol for voting in dist.
systems,” in Proc. 12th Znt. Con$ Dist. Comput. Syst., June 1992.

[5] M. Ahamad and M. H. Amar, “Performance characterization of quorum
consensus algorithms for replicated data,” ZEEE Trans. Sofrware Eng.,
vol. 15, pp. 492496, Apr. 1989.

[6] G. Ciardo and J. K. Muppala, Manual for SPNP Package version 3.0,
Duke University, Durham, NC, July 1990.

[7] D. Barbara and H. G. Molina, “Vulnerability of voting mechanisms,”
ACM Trans. Comput. Syst., vol. 4, no. 3, pp. 187-213, Aug. 1986.

[SI -, “Reliability of voting mechanisms,” ZEEE Trans. Comput., vol.

[9] P. Bemstein and N. Goodman, “An algorithm for concurrency control
and recovery in replicated distributed databases,” ACM Trans. Darabase
Syst. vol. 9, no. 4, pp. 596-615, 1984.

[lo] W. A. Burkhard and P. D. Stojadinovic “Storage efficient reliable files,”
in Proc. 1992 Winter USENLY Con$, 1992, pp. 69-77.

[l l] D. Davcev and W. A. Burkhard, “Consistency and recovery control for
replicated files,” in Proc. 10th ACM Symp. OS Principles, 1985.

[12] S . Davidson and H. Molina, “Consistency in partitioned networks,” ACM
Comput. Surveys, vol. 17, no. 3, pp. 341-370, 1985.

[13] H. G. Molina and D. Barbara, “How to assign votes in a distributed
system,” J. ACM, vol. 32, no. 4, pp. 841-860, Oct. 1985.

[14] D. K. Gifford, “Weighted voting,” in Pmc. 7th ACM Symp. OS Princi-
ples, 1979, pp. 150-162.

[15] S . Jajodia and D. Mutchler, “Dynamic voting,” in Proc. ACM SZGMOD,

[16] S . Jajodia and D. Mutchler, “Enhancements to the voting algorithm,” in
Proc. 13th Znt. Con$ Very Large Databases, 1987, pp. 399-406.

36, pp. 1197-1208, Oct. 1987.

1987, pp. 227-238.

www.manaraa.com

AGRAWAL AND JALOTE: CODING-BASED REPLICATION SCHEMES 25 1

[17] S . Jajodia and D. Mutchler, “Dynamic voting algorithms,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 231-280, June 1990.

[IS] L. Mirsky, An Introduction to Linear Algebra. New York: Dover,
1982.

[19] J. F. Paris, “Voting with witnesses: a consistency scheme for replicated
files,” in Proc. 6th IEEE Int. Conf: on Distrib. Comput Syst., 1986, pp.
606-612.

[20] -, “Voting with a variable number of copies,” in Pmc. 16th IEEE
Fault-Tolerant Comput. Symp., 1986, pp. 50-55.

[21] -, “Voting with bystanders,” in Proc. 9th Int. Conf: Distrib. Com-
put. Syst., 1989, pp. 394-401.

[22] C. Pu, J. D. Noe, and A. Proudfoot, “Regeneration of replicated objects:
A technique and its eden implementation,” in Proc. 3rd IEEE Int. Conf:
Data Eng., 1987, pp. 175187.

[23] M. 0. Rabin, “Efficient dispersal of information for security, load
balancing and fault-tolerance,” Harvard University, Cambridge, MA,
TR-02-87, Apr. 1987.

[24] -, “Efficient dispersal of information for security, load balancing
and fault-tolerance,’’ J. ACM, vol. 36, no. 2, pp. 335-348, 1989.

[25] R. van Renesse and A. S . Tannenbaum, “Voting with ghosts,” in Proc.
8th IEEE Int. Conf: Distrib. Comput. Syst., 1988, pp. 456461.

[26] F. Schneider and Schlichting, “Fail-stop processors: An approach to
designing fault-tolerant distributed systems,” ACM Trans. Comput. Sys.,
vol. 1, no. 3, pp. 222-238, Aug. 1983.

Gagan Agrawal was bom in India in 1970. He
received the Bachelor of Technology degree in
computer science and engineering from the Indian
Institute of Technology, Kanpur, in 1991.

He is currently a Ph.D. student at the Department
of Computer Science, University of Maryland, Kan-
pur. His research interests include parallel comput-
ing, compilers and runtime support for distributed
memory parallel machines and fault-tolerance.

Pankaj Jalote (M’91-SM’92) received the B.Tech. degree from the Indian
Institute of Technology, Kanpur in 1980, the M.S. degree from Pennsylvania
State University, University Park in 1982, and the Ph.D. degree in computer
science from the University of Illinois at Urbana-Champaign in 1985.

From 1985 to 1989 he was an Assistant Professor in the Department of
Computer Science at the University of Maryland College Park. Since 1989 he
has been at the Department of Computer Science and Engineering at the Indian
Institute of Technology, Kanpur, where he is currently an Associate Professor.
His research interests are software engineering, fault tolerant computing, and
distributed systems. He is the author of the book, An Integrated Approach to
Sofiare Engineering (New York Springer-Verlag, 1991).

