
www.manaraa.com

I I I , I  

240 

Coding-B ased Replication 
Schemes for Distributed Systems 

Gagan Agrawal and Pankaj Jalote, Senior Member, ZEEE 

Abstract-Data is often replicated in distributed systems to 
improve availability and performance. This replication is expen- 
sive in terms of disk storage since the existing schemes generally 
require full files to be stored at each site. In this paper, we present 
schemes which significantly reduce the storage requirements in 
replication based systems. These schemes use the coding method 
suggested by Rabin to store replicated data. The first scheme that 
we present is a modification of the simple voting algorithm and its 
quorum requirements. ,We then show how some of the extensions 
of the voting algorithm can also be modified to get storage 
efficient schemes for managing such replication. We evaluate the 
availability offered by these schemes and show that the storage 
space required to achieve certain availability are signiscanfly 
lower than the conventional schemes with full file replication. 
Since coding is used, these schemes also provide a high degree 
of data security. 

Index Terms- Availability, coding schemes, data replication, 
data security, disk usage, distributed databases, fault-tolerance, 
performance evaluation, voting protocols. 

I. INTRODUCTION 

N A DISTRIBUTED SYSTEM, data can be replicated to I provide fault-tolerance against site failures and network 
partitions and to improve performance. This data replication 
requires a replica control algorithm to maintain consistency of 
the data. A survey of such methods can be seen in [12]. 

One such method for replica control is the weighted voting 
scheme suggested by Gifford 1141. In this algorithm, each node 
is assigned a number of votes. If N is the total number of votes 
assigned to all the nodes, then a quorum of T votes is required 
to do a read operation, and a quorum of w votes is required to 
perform a write operation. These quorum values are such that, 
T + w > N and 2 * w > N .  This ensures write-write mutual 
exclusion and read-write mutual exclusion. A particular case 
of the weighted voting is simple voting in which each node is 
assigned exactly one vote. 

With weighted voting, a node which wants to perform an 
operation on data, first sends a request to all the nodes in the 
system. The nodes reply with their version numbers (denoting 
the number of successful updates made). When the requester 
node gets T ( W )  votes, it can perform the read (write) operation. 
For read, it reads the data from node with the highest of the 
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version numbers given by the nodes that have replied. For a 
write, the node determines the highest version number, and 
writes on all the nodes that constitute the write quorum. All 
of these nodes then have the version number as one more than 
the highest version number existing in the system previously. 
The quorum conditions ensure that the node with the highest 
of the version numbers in a read/write quorum has the latest 
copy of the data. Many extensions to the voting method have 
been proposed [4], [ l l] ,  [13], [191-[21], 1251. Performance 
and reliability issues of these schemes have been studied in 
PI, r71, P I .  

A major drawback of replication based schemes is the high 
degree of disk storage requirement. If the file is replicated at N 
nodes, the disk storage requirement increases N fold. Just for 
maintaining availability of data against failure of one node at 
a time, the data has to be replicated at 3 nodes [21], incurring 
three times the disk storage costs. 

In this paper, we present schemes for maintaining replicated 
files, that significantly reduce the amount of storage space 
required to maintain the files with a given availability. These 
schemes use the coding suggested by Rabin [23], [24] to store 
the files. In this coding a file F is encoded and broken into 
n parts, each of size ( F ( / m  (m and n are parameters such 
that m 5 n). Only one such part of the file, called a coded 
partial file (CPF), is stored at each node. The file can be 
reconstructed by any m of such n CPF's. With the files being 
stored in a coded form, the read and write algorithms have 
to be redesigned. The first scheme that we present, simple 
voting with coding (SVWC), is obtained by modifying the 
simple voting algorithm and the quorum requirements. We 
also present how dynamic voting [17] is modified to obtain 
dynamic voting with coding (DVWC). We also discuss how 
some of the other extensions to the voting algorithm, weighted 
voting [I41 and the approach of coteries [13], can also be 
modified. 

Use of this coding in storing replicated data also provides 
a high degree of data security [3]. Since the file is stored in 
a coded form and only l/mth fraction of the file is stored at 
one nodes. An unauthorized user has to break into at least m 
different nodes and decipher the coding in order to read the 
file. This ensures far higher security of data as compared to the 
storage of entire file at each node, with or without any coding. 

The rest of the paper is organized as follows. We briefly re- 
view some other approaches to reducing storage in replication 
based systems in Section 11. We discuss the coding scheme as 
suggested by Rabin in Section 111, we look into how it may be 
used to store replicated data and our first scheme (SVWC) in 
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Section IV. The performance (availability and communication 
overheads) of SVWC is evaluated in Section V. We consider 
DVWC in Section VI and some other extensions to the voting 
scheme in Section Vn. 

n. RELATED WORK 
In this section, we briefly review some other approaches 

to reducing storage requirements in replication based systems. 
The only other known approaches to reducing storage require- 
ments in replication based schemes are voting with witnesses 
suggested by Paris [19], [20] and the fragmentation based 
approach suggested by Agrawal and Abbadi [l], [2]. 

In Voting with Witnesses, some of the regular copies are re- 
placed by witnesses. Witnesses store only the version number 
for that site but no data. They, therefore, occupy very little 
space. Witnesses can participate in read and write operations 
by sending their version number but read or write quorum 
must include at least one regular copies with the latest update. 
In [19], it has been shown that replacing some of the regular 
copies with witnesses has only marginal effect on availability, 
while reducing the storage requirements. However, this reduc- 
tion in storage requirements is marginai since if many regular 
copies are replaced by witnesses, then the availability does 
get effected severely. 

In the fragmentation based approach, a file to be replicated 
is broken into N parts, called fragments, where N is the 
number of sites participating in the replication. m fragments 
(m<N) are stored at each site such that each fragment is 
stored at exactly m sites. With this, the storage has been 
reduced to m/N of the original requirement. Any N - m + 1 
sites will always suffice to reconstruct the original file. This 
approach, as such, provides very low resiliency since the read 
and write quorums must intersect at N - m + 1 sites. A 
propagation based mechanism is used to improve resiliency 
in this scheme. In this, the transactions are stored in logs 
till other sites in the system can recover. With this, the 
read and write quorum need to intersect at just one site 
(same as with simple voting). Even with this, the maximum 
reduction in the storage space that this scheme can provide 
is restricted to N / [ N  + 1/21. Further, this approach has 
many deficiencies. With the complicated propagation based 
mechanism, the conceptual simplicity of voting based methods 
is lost. Further, the logs used in this mechanism take storage 
space themselves. This becomes significant if the failures are 
frequent and the recoveries do not take place fast enough. The 
propagation based approach incurs significant communication 
overheads as well. 

This scheme is also incapable of accommodating a change in 
the number of sites participating in the replication which might 
occur when the system is operational. This is because when 
the file is fragmented, the number N gets fixed. If the number 
of sites participating in the replication increases (or decreases) 
then the number of fragments into which the file has to be 
fragmented also changes. Also, the way this fragmentation is 
done, this is likely to incur significant overheads if during a 
write operation, the size of the file gets changed significantly, 
since the fragments will need to be created again. 

III. CODING SCHEME 
In the coding scheme suggested by Rabin 1231, [24], a file 

F of size IF1 is broken into n parts of size IFl/m such that 
any m of these n parts are sufficient to reconstruct the file, 
where, n 2 m. 

In this scheme, splitting and recombining files is done by 
using n vectors in m dimensional vector space, such that 
any m of these n are linearly independent. We will refer to 
such a system of coding as an (m,n) system. To understand 
this coding, consider a matrix FM, in which the bytes of 
the file are packed row-wise, m bytes in each row. In all 
the computations described, a byte is an integer in the range 
0 . - .2‘ - 1, (1 is the number of bits in a byte). All operations 
are in modulo p, for a prime integer p > 2‘. 

Let the n vectors of dimension m chosen for splitting and 
recombining be 

ai = a;l.-.a;,, i = l - . - n .  

A splitting matrix SM is constructed by arranging these n 
vectors column-wise. That is, SM;j = ai;. A coded file matrix 
CF is obtained as follows 

FM * SM = CF. 

The ith column of CF represents the fragment to be identified 
as the ith Coded Partial File (CPF). The way in which these 
CPF‘s have been coded, a group of m consecutive bytes in the 
original file is represented as one byte in each of the n CPF’s. 
This procedure of splitting files requires in all n additions and 
n multiplications per byte of the original file. For recombining, 
suppose that the m CPF’s available are T I ,  ~ 2 ,  - - , T,. To 
obtain the original file, we construct a matrix SM’, such that 
SMI-j = SM;, = arj;. That is, the column j of SM‘ is 
the column ~j of SM. SM’ is an invertible m * m matrix 
because its m columns are linearly independent m dimensional 
vectors. We further construct a matrix CF’, representing the 
m CPF‘s available for computing the original file, such that 
CF:j = CFi,. Clearly 

F M  * SM’ = CF’ + F M  = CF’ * SM’-l. 

Thus, the file can be reconstructed. The calculations for 
reconstruction require m additions and m multiplications per 
byte in the original file. 

An important prerequisite for this coding is a set of n 
vectors of dimension m, such that any m of them are linearly 
independent. One method of constructing this is the use of 
Vandermonde matrix [ 181. 

Also note that the CPF’s are constructed using modulo 
p arithmetic, where p > 2‘. This may results in “bytes” in 
the computed CPF’s which cannot be represented by a 1 
bit sequence. This problem can be taken care of as follows. 
Consider 1 = 8 (i.e., an 8-b byte, common with the current 
technologies). We use the following method for storing a 
computed “byte” with value greater than 255 (2‘ - 1). The 
bit sequence representing 255 is used as a special character 
which means that the current byte has overflown. In this case, 
the next byte in actual storage stores the overflow (z + 1 - 2‘, 
where z is the value of the byte computed). Note that the 
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smallest prime number greater than 255 is 257. So, the storage 
overhead associated with storing these overflown bytes, when 
2 = 8, is less than one percent, which is negligible. 

This coding scheme has also been used for providing data 
security in replicated databases [3]. Also, in [lo], a unix 
implementation of this coding scheme has been presented. 
Here, a file dispersal shell (FDS) has been developed which 
uses Rabin’s coding for providing a storage efficient disk 
mirroring scheme. 

Iv .  USING CODING WITH SIMPLE VOTING 
This coding can be used to support replicated data in 

distributed systems. If the data is to be replicated at N nodes, 
then instead of storing full file at each node (and increasing 
the disk storage N fold), we can store replicated data using 
this coding. With coding, we may need to store only one CPF 
at each node in which case the disk storage is reduced by a 
factor of m. We will refer to a system with (m, n) coding and 
N sites participating in the replication as an (m, n, N) system. 

With coding, reading and updating a file becomes more 
complex. The changes made in the original file have to be 
incorporated into each CPF. A change made in one or more 
of the m bytes in a row of FM corresponds to a change in one 
byte at each CPF. Any change in the file can be incorporated in 
the CPF’s by multiplying these rows of FM by the columns of 
SM corresponding to the CPF’s participating in the operation 
and changing those specific bytes at the individual CPF’s. 

With this method of storing replicated data, we need proper 
read and update mechanisms such that data consistency is 
maintained and high availability is supported. In this sec- 
tion, we present a protocol called simple voting with coding 
(SVWC), which is a modification of the simple voting method. 

In our (m, n, N) system, we assume that n 5 N ,  i.e., 
number of CPF‘s does not exceed the number of nodes. 
Exactly one CPF is stored at each node. Also, each CPF is 
stored at at least one node and if n < N, some CPF‘s may 
be stored at more than one node. The n CPF’s generated by 
the coding are labeled 1 . . . n. A set of CPF’s are said to be 
all distinct if no two of them are the same. A version number 
denoting the number of successful updates made on the CPF at 
that node is maintained at each node. We assume that the nodes 
can fail only by aborting the transaction [26]. We consider only 
the simplest form of voting, in which each node (which has 
exactly one CPF) is assigned one vote each. 

A. Quorum Requirements 

Since coding is used for storing replicated data, the quorum 
requirements of SVWC are different from that of voting 
method. The quorum for the read operations must include 
at least m distinct CPF’s with the latest updates. The write 
operation must write sufficient CPF’ s to enable participating 
set of certain cardinality to include m distinct CPF‘s with latest 
update. Here, we study the bounds on the quorum values. 

Dejinition I: Minimum Sufficient Quorum (MSQ) for read 
(write) operations is defined as the smallest number of votes 
which may allow a read (write) operation to complete success- 
fully. We denote this by r’(w’). 

Clearly, for a (m,n,N) system, MSQ for read and write 
operations can be given by 

r’ = max(m,r)  
w’ = max (m, w) 

where r and w are quorum sizes for read and write operations 
for simple voting in a system with N nodes. If a write 
operation updates at least n’(n’ 2 m) distinct CPF’s in the 
system, we then have 

w’ = max (n’, w). 

Dejinition 2: Maximum necessary quorum (MNQ) for read 
(write) operation is defined as the largest number of votes 
which may be required to successfully complete a read (write) 
operation. We denote this by ~ ” ( w ” ) .  

Note that in weighted voting with conventional storage, 
there was no such concept of MNQ and MSQ since the same 
number of votes would be minimum sufficient and maximum 
necessary. For example, a read operation cannot be completed 
without r votes (r + w > N) since mutual exclusion will not 
be assured and can always be completed with r votes since it 
will always include at least one site with the latest update. 

The MNQ requirements for read and write operations will 
determine the minimum resiliency of the system for the read 
and write operations. 

Claim I :  In an (m,n,N) system with SVWC where 
every write operation updates at least n’ distinct CPF’s, the 
MNQ for the read operations is given as r” = N - n’ + m. 

Proof: We need to prove that this is the minimum 
number of votes which shall ensure mutual exclusion and shall 
always include at least m distinct CPF‘s with the latest update. 
If r“ = N - n‘ + m and since w’ 2 n‘, we get 

TI‘ + w‘ 2 N + m 

which means that a read quorum of cardinality N - n’ + m 
will always intersect with any write quorum. This ensures 
mutual exclusion. Now, a participating set of cardinality 
N - n’ + m or more excludes at the most n’ - m sites. Since 
the write operation had updated at least n’ distinct CPF‘s, at 
least m CPF’s with latest update will be included in such a 
participating set. 

Alternatively, consider a participating set of cardinality less 
than N - n’ + m. In the worst case, the last write had updated 
exactly n’ distinct CPF’s, n’ - m + 1 of those are not present 
in the participating set, so, the operation cannot complete 

Claim 2: In an (m,n, N) system with SVWC, where 
every write operation updates at least n’ distinct CPF’s, the 
MNQ for write operations is given as.w” = max(w’, N - 
n + n’). 

Proof: w” must be greater than or equal to w’ to ensure 
mutual exclusion. We know, by our system model, that there 
are n distinct CPF’s present in the system. If the participating 
set has a cardinality of N - n + n’ or more, at the most n - n‘ 
sites are excluded. So, at the most n - n’ distinct CPFs are 
excluded from the participating set, implying that at least n’ 
distinct CPF’s are present in the participating set. 

successfully. 0 
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Alternatively, consider a set with cardinality less than 
N - n + n’. Here, n - n’ + 1 distinct CPF’s may be excluded 
from the participating set, and, in the worst case, they may all 
be the only CPF’s of their kind in the system. So, less than n‘ 
distinct CPF’s may be present in the participating set. 0 

B. SVWC 

has an upper bound of N - w’, since w’‘ has to at least w’. 
Decreasing n’ below w’+n-N does not decrease w”, whereas 
T” increases. So, r + w” increases if n’ is less than w’ +n - N .  

Moreover, it can be seen that highest overall resiliency 
(lowest value of 2*N- (T”+w”) = N-m) is achieved when 
n = N, that is, when all the sites have distinct CPF’s. Clearly, 
if all the CPF’s are distinct, then lesser number of votes would 

We have seen the bounds on the quorums in the preceding 
subsection. For a particular operation, the number of the votes 
in the quorum can be between MSQ and MNQ based on the 
responses for the request that it receives from other sites. 
The site initiating a read (write) operation sends read (write) 
request to all the other sites in the system. The sites reply with 
their version numbers and the CPF numbers. 

The read operation proceeds as follows. The site initiating 
the operation (initiator) first collects at least r’ votes. This 
ensures mutual exclusion with write operations and necessarily 
includes at least one site with the last update, so the initiator 
can determine the latest version number. It then checks if there 
are at least m distinct CPF’s with the latest update. If so, it can 
read from any m distinct CPF’s with latest version number. 
Else, the quorum is not complete and it waits for responses 
till it has m distinct CPF’s with 1atest.version number. By 
definition, r” votes ensure that m distinct CPF’s with latest 
update are included and so the quorum will necessarily be 
complete. 

The write operation is also similar. The initiator first collects 
at least w’ votes to ensure mutual exclusion. Presence of n’ 
distinct CPF’s is necessary for the quorum to be complete. It 
collects votes till n’ distinct CPF’s are included. A total of w” 
votes ensure this and necessarily completes the quorum. 

Note that in a read operation, the initiator has to compute the 
file from the m CPF’s it has read. This requires 2m operations 
per byte of the original file. Similarly, if a write operation has 
to update a sequence of k bytes in the original file, then it 
requires (r(IC/m)l + 1)mn operations in all. 

C. Resiliency 

Resiliency of a system means the maximum number of 
failures that can be tolerated while keeping a particular service 
or operation available. In our system, N - T” and N - w” 
are, respectively, the resiliency offered by the read and write 
operations. In voting systems, typically the read resiliency 
can be improved at the expense of write resiliency and vice- 
versa. However, the sum of the read and write resiliency 
remains unchanged and hence can be used as a measure of the 
effectiveness of the scheme with respect to the fault-tolerance 
it offers. Therefore, we use this as a measure of the fault- 
tolerance of SVWC. This value for voting algorithm is N - 1. 
By the claims 1 and 2 we have, assuming w’ 5 N - n + n’ 

2 * N - (r” + w“) = n - m. 

This value therefore, does not depend upon n’ as long as 
w’ 5 N-n+n’. By varying n’, the values of r” and w” can be 
changed. That is, a higher n’ gives lower write resiliency and 
higher read resiliency, whereas decreasing n’ increases write 
resiliency and reduces read resiliency. The write resiliency 

be required by read and write operations to ensure m distinct 
CPF’s with the latest update and n’ distinct CPF’s respectively. 
As n decreases, the resiliency of the system decreases. It can 
be concluded that to achieve maximum fault-tolerance from 
the system, one should have a system with n = N .  

However, there are reasons why a lower n may be preferred. 
We believe that a replica control protocol should be capable of 
accommodating changes in the number of sites participating 
in replication. Consider the case when the number of sites 
participating in the replication may increase. Now, adding a 
new vector, such that it is linearly independent with any set of 
m - 1 of the n vectors participating in the coding being used in 
the system, can be a very difficult task. Whereas, changing the 
system from (m, n, N) to (m, n, N +  1) may be an easier task, 
involving only change in the quorum requirements [14], [20]. 
The system will then be operating with lower n as compared 
to N .  Moreover, the computational cost of determining the 
various CPF’s increases as the number of distinct CPF’s 
increases. Thus, we will prefer a system with a comparatively 
lower n as compared to N .  

Example: Consider an (3, 10, 12) system. The value of 
r” + w” for SVWC is 17, provided n’ 2 w’ - 2. This value 
for a 12 node system with conventional voting is 13. If we 
choose r = 4,w = 9 and n’ = 10, we haver’ = 4, w’ = 9, 
r” = 5 and w” = 12. The resiliency for write operations may 
be improved by decreasing n’, for n’ = 7, we have r” = 8 
and w” = 9. The resiliency for write operations cannot be 
increased any further since further decrease in n’ increases r” 
without decreasing w“ . 

D. Dynamic Redistribution of CPF’s 

We saw in previous subsections that to ensure the presence 
of m distinct CPF’s in the participating set with certain number 
of votes, the write operations are required to update at least n’ 
distinct CPF’s, resulting in a high MNQ for write operations. 
These conditions apply to a system where CPF’s are statically 
distributed among the nodes. 

We can achieve higher resiliency with lower n if we allow 
dynamic change in the distribution of CPF’s on the nodes in 
the system. With this approach, if during a write operation 
involving k sites (IC 2 n’) only Z(Z< n’) distinct CPF’s 
are present in the participating set, then the write operation 
completely rewrites some duplicate CPF’s in the participating 
set such that, at the end of the write operation, the participating 
set consists of at least n’ distinct CPF’s. 

For example, suppose the participating set consists of ex- 
actly n’ sites, containing only n‘ - 1 distinct CPF’s, such 
that two sites have the ith CPF while j th  CPF is not present 
at all. The write operation may replace an ith CPF by an 
updated j th  CPF, while all the other CPF’s may be updated 
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at their respective sites. The write has, now been done on 
n‘ distinct CPF’s, without the write set initially including n’ 
distinct CPF‘s. 

By this policy, a write operation “redistributes” the CPF‘s 
in the system. By the method the CPF‘s are replaced by other, 
at least one copy of each of the n distinct CPF’s is always 
present in the system. 

The SVWC changes as follows. The read algorithm remains 
unchanged. The write algorithm no longer needs to include n’ 
sites with distinct CPF‘s, it simply needs to include n’ sites. 
The MSQ requirements and claim 1 remain the same. To give 
maximal resiliency we have 

n’ = min (w‘, n). 

This is because the write quorum will involve at least w‘ 
sites. If w’ 2 n and if the write operation updates at least w’ 
CPF’s, then the Y Q  requirements for read can be reduced. 
Taking n’ > w’ would increase the MNQ requirement for write 
operations. But n’ has to be less than or equal to n anyway. 
With this value of n’, the MNQ for read (from Claim 1) is 

r“ = N  - w’+m, i f n  2 w‘ 
otherwise. = N - n + m, 

Claim 2 no longer holds since the write operation does not 
need to include n‘ distinct CPF’s. Since n’ 5 w’, the presence 
of w’ sites would be enough to ensure n’ CPF‘s in the quorum. 
However, if the write operation needs to redistribute the CPF’s, 
and was otherwise not writing the entire data item, it may need 
to perform a read operation to be able to write a full CPF at 
the sites where the CPF is being replaced. The MNQ for write 
is, therefore 

w’’ = max (w’, r”). 

We see that if n 2 w’, then r “ +  w‘ = N +m. Ifr and w 
have been so chosen that w‘ 2 T”, then 2 * N - (r” + w”) = 
N - m. So, for all choices of n from w’ to N, the sum of the 
resiliency of read and write operations is N - m. This implies 
that with the dynamic redistribution of CPF’s, we can achieve 
better fault-tolerance, even with lower n. 

Note that the restrictions for achieving N - m as the sum 
for read and write resiliency are n 2 w’ 2 r”. w’ 2 r’l is not 
a serious restriction since, in voting systems the write quorum 
is generally greater than the read quorum anyway. The only 
restriction therefore is that n should be at least w’. 

Example: Consider a (3, 10, 12) system again. If we 
take r = 4 and w = 9 again, we get n‘ = 9. This gives 

15, a clear improvement over 17 necessary without dynamic 
redistribution. Note that this could have been achieved for any 
value of n from 9 to 12. If n = 8,n’ becomes 8 then r’’ 
changes to 7. r” + w” is then 16. 

r‘ = 4 , ~ “  = 9 , ~ ”  = 6 and w” = 9,  giving r” + w“ = 

v. m O R M A N C E  

In the previous sections we have seen how coding can be 
used to store replicated data. We also saw SVWC, a new 
scheme for managing replication when coding is used to 
store replicated data. Clearly, if coding is used, the storage 

requirements can be reduced by a factor of m. However, 
since the quorum requirements have changed, the availability 
offered is lowered. We, therefore, study the reductions in 
the storage space to store the data with a given amount of 
availability. In this section only, we also study the changes in 
the communication overheads with the proposed scheme. 

A. Availability 

Availability is the most important performance metric of 
any voting system. The definition of availability that we will 
use is as follows. Availability of read (write) operations of 
any system is the probability, in the steady state, of a read 
(write) quorum being available in the system. To evaluate 
the availability, we make the following assumptions about 
our system. We assume that each site is operational at any 
time with a probability p (called availability of a node), 
independent of any other site. Further, we assume that no 
network partitions take place. This assumption is required to 
separate our analysis from numerous network topologies that 
may exist in a distributed system. This assumption has already 
been used for analysis in [5], [8], [15], [19]-[21]. Also, its 
has been shown in [17] that the results on the availability 
are qualitatively the same when the analysis is done with or 
without considering the network partitions. 

For simplicity, we assume that operations take place only 
when MNQ is met. Note that the actual availability of SVWC 
is more than what we evaluate here since operations may be 
completed even with quorum values less than MNQ. In our 
(m, n, N )  system, we assume that n 2 N + m/2 and dynamic 
redistribution is used. One possible quorum assignment for 
SVWC gives 

N + m  w = IT], r/I = 1 7 1 .  
A similar assignment for simple voting for a system of N 
nodes is 

We compare the availability for write operations using these 
vote assignments. 

The availability of write operations for conventional voting 
is 

N 

P [ X  2 w] = (7 )p’(l - p ) N - i .  
i=w ‘ ’ 

where, X is the number of operational sites at any time. The 
availability of write operations for the (m, n, N )  system is 

(7)  
i=w 

The storage factor (denoted by 1 )  of a (m, n, N )  system is 
N/m. A storage factor of 1 means that the overall storage in 
the system is 1 times the size of the file being replicated. The 
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Fig. 1 .  Availability of system versus availability of nodes ( 1  = 5). 

storage factor, therefore, represents the storage overhead in 
the system. In the discussion that follows, system with m = 1 
means simple voting (i.e., without coding). 

Fig. 1 shows how the availability of (m,n,l * m) system 
varies with the availability of nodes (p) for the same storage 
factor (fixed at 1 = 5). We can see that, except when the nodes 
have very low availability (p < .70), the availability increases 
as m increases. The relatively poor performance of voting with 
coding at higher m when p < .70 can be explained as follows. 
In coding with parameter m, the expression of availability 
excludes terms ( N / i ) p i ( l  - P ) ~ ,  from i = [ ( N  + 1/2)1 to 
[ ( N  + m/2)1 - 1 as compared to the availability without 
coding. In the binary expansion of (p + (1 - P ) ) ~ ,  the central 
terms become significant if p is close to 0.50. Hence, the 
availability offered reduces. However, for p close to 1, only 
the end terms in the binary expansion are significant, hence, 
the availability offered (with a given N) is high even with a 
higher value of m. 

In Fig. 2, we show the storage factor required by (m, n, 1 * 
m) system to achieve desired availabilities, (p is fixed at 
.90). For high availabilities, as m increases, the storage factor 
required decreases. The reduction in the storage space is not 
achieved when the availability required is low. This is because 
when m is close to N ,  the probability of finding m distinct 
CPF’s in the participating set is low. 

In Fig. 3, the storage factor required to achieve availability 
of .999 is shown at different values of p. Clearly, the storage 
factor required decreases with increasing m. Moreover, with 
m = 3 or m = 4, the reduction in storage space is generally 
better than a factor of two. So, our scheme can definitely offer a 
much greater reduction in storage space than the fragmentation 
based approach. 

I q u i d  

24.00 t- I I I l m  - 1 
I 

14.00 ‘““I 

- 1  

,-=3-- 
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1zm - 
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Fig. 2. 6 required versus availability, p = .90. 

B. Communication Overheads 

To study the communication overheads associated with the 
proposed scheme, we use bandwidth factor as the metric. The 
bandwidth factor is the mean sum of the message sizes for 
an operation. It is measured as a multiple of the size of the 
original file on which read or write operations are being done. 

The communication overhead corresponding to the broad- 
cast of the read or write request is clearly proportional to the 
number of sites participating in the replication. The number 
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of messages required for writing the replicated data after 
gathering quorum is [ N  + m/21 - 1, assuming that the site 
initiating the operation is one of the sites written into. The 
bandwidth factor is ( l / m )  * ( I N  + m/21 - 1). 

In Fig. 4, we compare the bandwidth factor required for 
write operations for different values of m, when the availabil- 
ity required is varied (p = .go). The bandwidth requirement 
for write operations decreases considerably with the use of 
coding and with increasing m. Note that we are comparing 
the systems with different values of m when they provide the 
same availability. Thus, N increases with m. However, even 
with increased N (and hence increased write quorum [ N  + 
m/21), the bandwidth requirements decreases significantly 
with increase in m. This is because the N required to maintain 
the same availability increases only marginally with increase 
in m and the bandwidth factor required for each message is 
l / m .  

For a read operation, data from m sites are read. Assuming 
that no failure (or repair) has occurred since the last write in 
the system and the read operation is equally likely to arrive at 
all the operational nodes, the probability that the site initiating 
the read request does not have the latest update is 

Availability for write operations . 
Note that if i sites (i 2 w"), participated in a write operation 
and if only w" of them were updated, then the probability of 
one of these i sites not having the latest update is i - w"/i. 
The average number of messages required is m - 1 plus the 
probability that the site initiating the operation does not have 
the latest update (shown above). The bandwidth factor required 
is the average number of messages required divided by m. 

In Fig. 5 ,  we study the bandwidth factor required for read 
operations, at different values of m, when availability required 
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Fig. 4. Bandwidth factor required by write operations 
( p  = .go). 
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Fig. 5. Bandwidth factor required by read operations versus availability 
( p  = .go). 

is varied (p = .go). For read operations the bandwidth 
requirement increases as m increases. 

From the analysis shown in this section, it is clear that 
the proposed scheme SVWC gives better availability for 
same storage factor. Alternatively, the storage requirements 
for achieving certain desired availability decreases with the 
proposed method. Note that the reduction in the storage 
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requirements achieved is much more than that from the frag- 
mentation based approach and Voting with Wimesses. The only 
disadvantage is the increase in the communication overhead 
for read operations. 

VI. DYNAMIC VOTING WITH CODING 
We have seen how the simple voting protocol can be 

modified to manage coding based replication. However, other 
replica control protocols can also be modified to manage such 
replications. In this section we present dynamic voting with 
coding, a new scheme for managing coding based replication. 
This scheme is derived from the dynamic voting algorithm 
suggested by Jajodia and Mutchler [ 151-[ 171. The dynamic 
voting algorithm algorithm of Jajodia and Mutchler is, in turn, 
a modification of a previous replica control protocol suggested 
by Davcev and Burkhard [ll].  

A. Dynamic Voting Protocols 

In the dynamic voting protocol, the quorum requirements 
for read and write operations have been modified to enhance 
availability in face of network partitions. 'In this algorithm, 
any operation needs to collect a majority of the sites which 
participated in the last update rather than a majority of all 
the sites in the system. All sites participating in an update 
operation record the total number of sites participating in that 
operation in a variable called update site cardinality (SC). 
All these sites then have the highest version in the system. 
For the next update or read operation, at least a majority 
of the SC( [SC + 1/21) sites with the latest version number 
are required. In this protocol all the sites available during a 
write operation are updated, rather than updating just the sites 
required for majority of SC. 

Dynamic voting with coding (DVWC) operates in a similar 
fashion. The only modification required is that any operation 
needs at least m distinct CPF's with the latest version number 
besides a majority of SC. For the simplicity of our discussion, 
we assume that n = N .  Now, the quorum requirements for 
any operation in the system is max (m, [SC+1/21). With this, 
the operation of DVWC remains the same as that of dynamic 
voting as long as SC for any update is at least 2 m  - 1. 

B. Availability Analysis 

We evaluate the availability offered by this protocol to 
compare the storage space requirements with those of dynamic 
voting. Again, we assume that network partitions do not 
take place. To make our analysis feasible through stochastic 
models, we assume that the a failure (recovery) arrives at 
any operational (unoperational) site with a rate X(p). We 
also assume that updates are much frequent than failures and 
recoveries so that whenever any update or failure occurs, an 
update arrives immediately with that topology. This is called 
frequent update assumption. This assumption was used by 
Jajodia and Mutchler for the original analysis of dynamic 
voting [17]. This assumption may be quite reasonable for 
certain applications, else, it may be satisfied by the use of 
frequent polling [ 171. 

... 

... 

Fig. 6. Markov chain representation of dynamic voting. 

We use a Markov model to compute the availability of 
these schemes. Under the above assumptions, the operation 
of dynamic voting is as follows. Whenever SC is 3 or more, 
the system is always available since if a failure arrives, still 
SC - 1 sites with the latest update are available, this is a 
majority of SC. Because of the frequent update assumption, 
another update occurs in the system with SC one less than 
the SC for previous update. If SC is 2 and both the sites with 
the latest update are up, then also the system is available. 
However, if SC is 2 and a failure occurs, then no operations 
will be possible until both these sites with the latest update 
are able to recover. 

A Markov model for dynamic voting is shown in Fig. 6. 
States are denoted by ( X , Y )  where X is the number of 
operational sites with the latest update and Y is the number of 
operational sites without the latest update. Note that if X 2 2, 
then SC = X and Y = 0. The system will be available in this 
case. If X < 2, then SC = 2 and the system is unavailable. 

DVWC operates similarly with the parameter m replacing 
2. If SC > m, then the system will definitely be available since 
a majority of sites with the latest update as well as m sites 
with the latest update are available. If SC is m and then a 
failure strikes, then the system will be unavailable until all 
these m sites with the latest update recover. Markov model 
for DVWC is shown in Fig. 7. 

C. Results 
These Markov chains were solved by giving a generalized 

stochastic Petri net (GSPN) description of these and using the 
stochastic Petri net package (SPNP) [6]. An interesting aspect 
of this analysis is that with the frequent update assumption, 
the operation (in terms of quorum availability) of DVWC with 
m = 2 is same as that of Dynamic Voting. This is because 
operation of dynamic voting is a special case of DVWC with 
m = 2. A reduction in storage space by a factor of 2 is, 
therefore, achieved straight away. If the failures (recoveries) 
occur at any operational (unoperational) sites with rate X ( p ) ,  
then in steady state, the probability of any site being operation 
is p / ( p  + A). We denote this by p. 
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of DVWC. 

This may be explained as follows. While increasing the 
I I I I c IP2 number of nodes decreases the probability of the system 

entering the state where SC is m and not all the nodes 
with the highest version number are up, the expected time 
that the system (after having reached such a state) will 
take to be able to offer availability again also increases 
with N .  Hence, availability cannot increase indefinitely with 

Another point to note is that the maximum availability that 
can be offered decreases with increase in m. This is because 

these sites are up increases with increase in m. 
However, for the realistic values of availability, the storage 

space required does decrease with increasing m. With m = 2, 

the full file replication. In Fig. 9, we compare the storage 
space requirements for getting the availability of .999, for 
m = 2 . . .5 .  Clearly, significant reductions in the storage space 

- 

- 

- increasing N .  
- 

- the probability of reaching a state where SC is m and not all 
- 

- 

- the storage requirements decrease to half as compared to 
- 

- . 
o m  r I I I l ~ NltmbsoINodcr requirements can be achieved with higher values of m. 

10.00 1o.w 30.00 am 
Fig. 8. Availability offered versus number of nodes, ( p  = .so). 

VII. CODING WITH OTHER VOTING SCHEMES 

In this section we discuss how two of the extensions to the In Fig* 8y we 'Ompare the Offered by the dY- 
namic voting with coding at different N ,  keeping P fixed at 

simple voting, i.e., weighted voting and the approach based 
on cote,$es can also be to maintin c o ~ c ~ e s s  when 30. We compare the availability offered for m = 2 .  . .5 .  Note 

that the results for simple dynamic voting are same as that of coding is used to store replicated data. 

DVWC and m = 2. 
From this graph we see that with dynamic voting (with 

or without coding), increasing the number of nodes does not 
indefinitely increase the availability (unlike simple voting). 

A* 

Weighted voting is a generalization of simple voting in 
which a site can be assigned any number of votes. In [13], 

voting 
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it has been shown that for a homogeneous system with odd 
number of sites, assigning 1 vote to each site gives maximum 
availability. If the number of sites is even, then giving one of 
the nodes an extra vote helps in breaking ties (and improves 
availability). In heterogeneous systems, however, more reliable 
nodes can be given higher number of votes and this may help 
improve availability. Also, giving higher number of votes to 
sites having larger number of read and write requests coming 
to them may also help improve performance of read and write 
operations. 

When coding is used for storing replicated data, sites may 
be given different number of votes. However, for the MNQ 
requirements shown in Sections IV to hold, a site with k votes 
needs to keep k CPF’s if (k 5 m) and m CPF’s if k > m. 
This is because in the computations for MNQ, we assume that 
intersection of read and write quorum at m votes will imply 
the intersection at m CPF’s also. 

Clearly, giving higher weights to some of the sites increases 
the overall storage requirement in the system. Note that this 
wasn’t true with the full file replication since one full copy 
of the file is stored at each of the sites irrespective of the 
number of votes assigned to that site. However, the storage 
site in weighted voting with coding never exceeds the storage 
requirement of full file replication, since at the most mCPF’s 
(i.e. one full copy) is stored at each site. 

The main purpose of giving unequal votes to nodes may 
be that by giving higher number of votes to nodes with 
higher load, performance of read and write operations can 
be improved. A node with higher number of votes will 
have higher number of CPF‘s, so if the CPF’s at that site 
have the highest version number, the communication cost 
for read operations will be reduced. Similarly during the 
write operations, not many other sites may be required to be 
included in the quorum, again the communication costs will 
be reduced. 

B. The Method of Coteries 
The approach based on coteries in [ 131 is a generalization of 

the weighted voting method. Consider the set of nodes of the 
system. A coterie is defined to be a set of subsets of this set 
of nodes. These member subsets are such that each intersects 
every other at at least one node and no such subset is a proper 
superset of any other member subset. The quorum requirement 
with this approach is that a set of nodes forms a quorum only if 
it includes a member subset of the coterie. Clearly, since these 
member subsets intersect, mutual exclusion of read-write and 
write-write operations is ensured. 

This approach may be modified to work with the coding as 
follows. Again, we store one CPF at each of the nodes. We 
define m-coterie, which is similar to coterie except that each 
member subset must intersect with every other member subset 
at at least m sites. For simplicity of discussion, we assume 
that number of distinct CPF’s in system is at least equal to the 
cardinality of the largest member subset in the coterie. 

The quorum requirements will now be as follows. A write 
quorum must include one such member subset of the coterie. 
The write operation will use dynamic redistribution so that 
after the write, all the nodes in the member subset have distinct 
CPF’s. MSQ for read operations is a set of nodes such that 
they intersect every member subset of the coterie at at least one 
node. This ensures mutual exclusion and the highest version 
number existing in the system can be known. If there are m 
distinct CPF‘s with the highest version number, then the read 
operation can be completed. The MNQ for read quorum is 
same as the quorum requirement for the write operation. 

VIII. DISCUSSION 

Data replication is often used to enhance the availability 
and performance in Distributed Systems. This replication 
of data incurs a high storage overhead. In this paper, we 
have presented schemes which significantly reduce the storage 
requirements for maintaining the data with a given availability. 
These schemes use the coding suggested by Rabin [2], [3] to 
store replicated data. 

In the proposed schemes, only coded parts of files are stored 
at individual nodes rather than storing full files at each node, 
as in the conventional schemes. m of these parts are required 
to reconstruct the file. To use this coding for storing replicated 
data, we need proper read and write algorithms. 

The first scheme that we presented (SVWC), is a modi- 
fication of the simple voting algorithm. The algorithm and 
the quorum requirements are modified to manage such coding 
based replication. We initially considered the case when the 
distribution of these parts is static. Then, we extended this to 
the case when the parts are dynamically redistributed during 
the write operations. This dynamic redistribution improved the 
resiliency. The second scheme that we presented (DVWC) is 
similarly derived from dynamic voting algorithm of Jajodia 
and Mutchler. 

We evaluated the availability offered by both these schemes. 
The results show that the storage space required to achieve 
certain availability reduces significantly with the proposed 
schemes. Alternatively, better availability can be achieved by 

I I 
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using the same storage space. We also briefly discuss how 
some other extensions to the voting algorithms can also be 
modified to derive storage efficient schemes for maintaining 
replicated data. 
Our method achieves much better reductions in the storage 

requirements than the other approaches previously proposed 
for this purpose. The maximum reduction that the fragmen- 
tation based scheme can provide is by a factor of 2. Our 
schemes, with the values of m 3 and above can provide much 
better reduction in the storage requirements. Also, our schemes 
do not suffer from the disadvantages that the fragmentation 
based scheme suffers from. The fragmentation based scheme 
is incapable of accommodating changes in the number of sites 
participating in the replication. This is because in this scheme, 
the number of sites participating in the replication is the same 
as the number of fragments into which the file is divided. 
In the proposed scheme, adding (or deleting) one site from 
the system is simple, the system changes from (m, n, N) to 
(m, n, N + 1) (or, (m, n, N - l)), requiring only a change in 
the quorum requirements [14], [20]. 

In the fragmentation based scheme, if the size of the file is 
changed significantly, the fragments will need to created again, 
incumng significant overheads. The proposed scheme does not 
have this disadvantage. Incremental updates can be made on 
each of the CPF’s to accommodate any change made in the 
original file. Also, note that both the proposed scheme and 
the fragmentation breplication schemes. The proposed scheme, 
however, does not add any complexity in the operation of the 
voting protocol. The fragmentation based scheme, on the other 
hand, requires a complicated propagation scheme to maintain 
sufficient resiliency. We believe that such a scheme would 
be hard to implement. Further, this propagation based scheme 
requires significant storage and communication overheads, the 
exact values of which are hard to assess. 

The use of Rabin’s coding in replicated databases also 
gives a high degree of data security [3]. Security of data 
in a replicated distributed system may be a real concern, 
because an unauthorized user may break into the data by 
simply breaking into the protection scheme at any of the N 
nodes where the data has been replicated. Also, during a read 
or write operation, the files may be read by an adversary if the 
communication links through which it is being transferred are 
insecure, as it happens with most of the existing networking 
technologies. 

Some efforts for enhancing security in distributed systems 
are [OO], [OOI, and [OO]. In [OO], Shamir suggests a method in 
which the information of the file is distributed over N files, 
each of the size of the original file, such that any m of then 
suffice to reconstruct the file. (N and m are parameters, s.t. 
m 5 N). While this method gives sufficient security, this is 
not storage efficient as each of the N files are as large as 
the original file. The approaches suggested in [OO], [OO] also 
treat the issue of data replication separate from that of data 
security. 

Use of Rabin’s coding for storing replicated data overcomes 
these problems and gives a high security to the replicated data. 
An unauthorized user has to break into at least m nodes and 
also has to decode the coding being used in order to read a file. 

Also, read and write operations require only individual CPF‘s 
to be transferred on a communication link at a time and not 
the entire file, which provides security against network tapping 
also. 

Note that our method requires 2m operations per byte of the 
original file for the read operation and 2n operations per byte 
for write operations. (m and n are parameters of the coding) 
Obviously, if the data is read and updated frequently, this 
may be a considerable overhead. However, this cost may be 
justified by the very significant reductions in the storage space 
requirements. Also note that our method provides data security 
as well. Any other scheme used for maintaining data security 
will also incur similar overhead in coding and decoding files. 

Overall, we believe that the proposed scheme can be very 
useful in supporting replicated data in a storage efficient 
manner, in addition to providing data security. 
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